Predicting Human Card Selection in Magic: The Gathering with Contextual Preference Ranking

Timo Bertram, Johannes Fürnkranz, Martin Müller Accepted at IEEE Conference on Games 2021

Content

- 1) General problem
- 2) Application to card games
- 3) Magic: The Gathering
- 4) Dataset
- 5) Contextual Preference Ranking Method
- 6) Results
- 7) Limitations

General problem

- Select optimal subset of set
- Select optimal item to add to set
- Main problem: Evaluation of set ≠ sum of items
 Don't want 11 goalkeepers, band with only guitarists

Application to card games

- Collectible Card Game (MTG, Hearthstone,..)
- Select set of cards (deck) to play with
- Deck building is integral part of success

Magic: The Gathering

- One of the most widely played collectible card games
- Strength of card is highly dependent on context
- Cards generally have one of five colors
- More different colors makes decks less consistent
- Cards have different rarities which decide their chance of occurrence

Drafting

- Cards are structured in *packs* of 15 cards
- At each step, a set of cards N is offered and a single one is chosen to add to the deck of the player
- Unchosen cards are given to next player
- Number of cards to chose from varies from 15 to 1 throughout draft
- 45 cards are chosen per player in a single draft
- Goal of this research: Predict the card chosen by a human player

• Collection of Magic: The Gathering drafts

 Data collected from website where humans can simulate drafting

Source: draftsim.com

- o 107.949 drafts
- o 8 players per draft
- o 265 different cards in dataset
- Highly imbalanced quantity of cards

1.0 Firstpickrate Pickrate 0.8 Firstpickrate: Chance Pickrate: Chance of 0.6 of card being chosen card being chosen Rate as the very first card when offered 0.4 0.2 -0.0 + 100 50 200 250 0 150 Ranked cards

Contextual Preference Ranking

- Train neural network to predict human decisions
- Training data uses preferences between cards given previously chosen cards

Contextual Preference Ranking

- Much larger training data than directly predicting best cards
- Takes into account which cards are available
 Cards/sets are encoded one-hot

Training

• **Siamese architecture**, multiple forward passes through the network with different inputs (anchor, positive, negative) to compute their embeddings

• **Embedding**: D-dimensional output of network

• Novelty: Image recognition defines distances as similarity. We define distance as how good it fits

Testing

 Ranking over all choices instead of pairwise comparisons

Compute distance of all choices to anchor

• Rank based on minimizing distance (i.e. maximize how well it fits the context)

Performance

• We report two measures, mean testing top-one accuracy and mean testing pick distance

PERFORMANCE OF PROPOSED AGENT TO PREVIOUSLY SEEN: ¹ HEURISTIC AGENTS [16] ² TRAINED AGENTS [16] ³ THIS WORK

Agent	MTTA (%)	MTPD
RandomBot ¹	22.15	NA
RaredraftBot ¹	30.53	2.62
DraftsimBot ¹	44.54	1.62
BayesBot ²	43.35	1.74
NNetBot ²	48.67	1.48
SiameseBot ³ , D=2	53.69	0.98
SiameseBot ³ , D=256	83.78	0.2476

Performance

Performance

Embedding

• Apart from using distances to rank choices, we can visualize embeddings of cards

- Compute D-dimensional embedding of each individual card
- Compute 2-dimensional visualization with t-SNE
 Color each card in its color in the game

Embedding

Limitations

Comparisons between Rares and Mythics are not occurring in dataset
 => ranking impossible

Card	Siamese	DraftSim	CFB	FPR
Spit Flame (R)	1	18	22	17
Leonin Warleader (R)	2	15	4	8
Goblin Trashmaster (R)	3	51	112	32
Ajani, Adversary of Tyrants (M)	4	7	5	1
Djinn of Wishes (R)	5	14	6	14
Tezzeret, Artifice Master (M)	20	1	2	3
Resplendent Angel (M)	30	9	1	2
Murder (U)	12	21	9	39

• Larger training data leads to longer training time

Considerations

- Evaluate cards/decks based on playing the game
- Moving from one-hot encoding to feature-based one
- Different domains (pregame selection, game playing, subset selection apart from games)

Summary

- Novel method for set addition problem
- Triplet loss using context, positive and negative
- Generating ranking of choices based on distances
- Achieved much higher accuracy than previously
- Approach is sensitive to embedding dimension
- Resulting embedding makes intuitive sense and can give intuition about data