## **EFFICIENTLY TRAINING NEURAL NETWORKS FOR IMPERFECT INFORMATION GAMES** BY SAMPLING **INFORMATION SETS**

**Timo Bertram, Johannes Fürnkranz, Martin Müller** Johannes Kepler University Linz, University of Alberta

KI 2024

### RECONNAISSANCE BLIND CHESS

# IMPERFECT **INFORMATION GAMES**









# RECONNAISSANCE BLIND CHESS













# APPROXIMATING INFORMATION SETS







### Aggregated Imperfect Information Evaluation $\hat{y} = \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{x}, \mathbf{h}^{(i)})$

 $\hat{y} = 0.25$ 





#### Budget of $N = n \cdot k$ Perfect Information **Evaluations**



#### Larger k Smaller n



#### Smaller k Larger n

















# What is better?











# Takeaways

- We want to build training datasets based on subsets of information sets
- There is a clear trade-off between approximating
  - more sets and receiving better estimates
  - Using 2 samples per information set empirically worked best



# THANK YOU

### TBERTRAM@FAW.JKU.AT

## @BERTRAMTIMO